The stages of flank ectoderm capable of responding to ridge induction in the chick embryo.

نویسندگان

  • J L Carrington
  • J F Fallon
چکیده

Reports on the stages when chick flank ectoderm can respond to ridge induction are contradictory. Different results have been obtained using presumptive wing or leg bud mesoderm as the inducing tissue with flank ectoderm as the responding tissue. In addition, although incomplete outgrowths have been obtained from recombinants with stage-19 flank ectoderm in a small percentage of cases, no complete outgrowths have been obtained from recombinants with ectoderm older than stage 18. We reinvestigated when chick flank ectoderm can respond to ridge induction and promote outgrowth of complete limbs. To do this, we combined flank ectoderm with in situ chick presumptive wing bud mesoderm using a pre-limb bud recombinant technique. When presumptive wing bud ectoderm was removed from the host and not replaced, wing development was suppressed. When host ectoderm was replaced with stage-15 through -18 chick flank ectoderm, limbs grew out in all cases; 86.4% of these recombinant limbs were distally complete. Stage-19 flank ectoderm formed a ridge and promoted limb outgrowth in 80.9% of recombinants; 52.9% of these were distally complete limbs. Recombinants made by grafting early stage-20 (40-somite donor) flank ectoderm to stage-15 hosts resulted in outgrowths in 60% of the cases and 33.3% of these were distally complete. Graft ectoderm from older donors did not respond to inductive mesoderm. Our results demonstrate that chick flank ectoderm from stage-15 through early stage-20 donors can respond to inductive signals from presumptive wing bud mesoderm to form an apical ridge. This ridge can promote outgrowth of distally complete wings in a substantial proportion of recombinants. This is two stages beyond when the ability to promote outgrowth of distally complete wings appeared to be lost using other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The stages of flank ectoderm capable of responding to ridge induction in the chick embryo By JILL L . CARRINGTON

Reports on the stages when chick flank ectoderm can respond to ridge induction are contradictory. Different results have been obtained using presumptive wing or leg bud mesoderm as the inducing tissue with flank ectoderm as the responding tissue. In addition, although incomplete outgrowths have been obtained from recombinants with stage-19 flank ectoderm in a small percentage of cases, no compl...

متن کامل

Initial limb budding is independent of apical ectodermal ridge activity; evidence from a limbless mutant.

Outgrowth of normal chick limb bud mesoderm is dependent on the presence of a specialized epithelium called the apical ectodermal ridge. This ectodermal ridge is induced by the mesoderm at about the time of limb bud formation. The limbless mutation in the chick affects apical ectodermal ridge formation in the limb buds of homozygotes. The initial formation of the limb bud appears to be unaffect...

متن کامل

Distribution of polarizing activity and potential for limb formation in mouse and chick embryos and possible relationships to polydactyly.

A central feature of the tetrapod body plan is that two pairs of limbs develop at specific positions along the head-to-tail axis. However, the potential to form limbs in chick embryos is more widespread. This could have implications for understanding the basis of limb abnormalities. Here we extend the analysis to mouse embryos and examine systematically the potential of tissues in different reg...

متن کامل

WNT Signals Control FGF-Dependent Limb Initiation and AER Induction in the Chick Embryo

A regulatory loop between the fibroblast growth factors FGF-8 and FGF-10 plays a key role in limb initiation and AER induction in vertebrate embryos. Here, we show that three WNT factors signaling through beta-catenin act as key regulators of the FGF-8/FGF-10 loop. The Wnt-2b gene is expressed in the intermediate mesoderm and the lateral plate mesoderm in the presumptive chick forelimb region. ...

متن کامل

Dorso-ventral ectodermal compartments and origin of apical ectodermal ridge in developing chick limb.

We wish to understand how limbs are positioned with respect to the dorso-ventral axis of the body in vertebrate embryos, and how different regions of limb bud ectoderm, i.e. dorsal ectoderm, apical ridge and ventral ectoderm, originate. Signals from dorsal and ventral ectoderm control dorso-ventral patterning while the apical ectodermal ridge (AER) controls bud outgrowth and patterning along th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of embryology and experimental morphology

دوره 84  شماره 

صفحات  -

تاریخ انتشار 1984